

Progressive Education Society's Modern College of Arts, Science & Commerce Ganeshkhind, Pune – 16 End Semester Examination: Jan.2023 Faculty: Science and Technology

Semester: I

Program: BScComp05 SET: A

Program (Specific): B.Sc.(Computer Science)

Class: F.Y. B.Sc. (Comp. Sc.)

Course Type: CC

Max. Marks: 35

Name of the Course: Principles of Digital Electronics

Course Code: 22-ELC-112 Time: 2Hr

Paper: II

Instructions to the candidate:

- 1) There are 4 sections in the question paper. Write each section on separate page.
- 2) All Sections are compulsory.
- 3) Figures to the right indicate full marks.
- 4) Draw a well labelled diagram wherever necessary.

SECTION: A

Q1) Define 5

- I) Encoder.
- II) Base of a number system. What is the base of (i) decimal number system and (ii) hexadecimal number system.
- III) Propagation delay.
- IV) Weighted code. Give one example.
- V) Define Combinational circuit. Give one example.

Q2) Very short answer questions (Attempt any 4/6)

4

- I) Write the difference between Gray code and BCD code.
- II) Draw logic diagram of half subtractor.
- III) "Multiplexer circuit can be built by using OR-OR combination of logic gate", state whether this statement is true or false.
- IV) Give any 2 uses of De-multiplexer.
- V) Draw the truth table of half adder.
- VI) Write a full form of ASCII code.

SECTION: B

Q3) Short answer questions (Attempt any 2/3)

8

- I) State and verify De-Morgan's 1St and 2nd theorems.
- II) Summarize working of 1:4 de-multiplexers. Draw its logic diagram.
- III) Write a short note on BCD code. Convert $(125)_{10 \text{ to}}$ BCD.

SECTION: C

Q4) Short answer questions (Attempt any 2/3)

8

- Explain 2's complement subtraction method. Solve $(57)_{10} (89)_{10}$ using 2's complement techniques
- II) Write a short note on Universal Gates. Build OR gate using only NAND gates.
- III) Solve the Boolean expression using k-map \overline{A} \overline{B} \overline{C} + \overline{A} \overline{B} \overline{C} $\overline{C$

SECTION: D

Q5) Attempt any two of the following (2/4)

10

- I) Draw neat logic diagram of 4 bit Universal adder/subtractor. Explain its working.
- II) Solve the following.
 - i) $(111011)_2 = (?)_{10}$
- ii) $(376.15)_{10} = (?)_2$
- III) Compare POS and SOP at any 2 point. Convert give expression into its standard POS (A+B+C+D).(A+B+C)
- IV) Discuss the working of decimal to BCD encoder and also draw the logic diagram.
